Abstract
OBJECTIVE The authors' aim in this study was to evaluate whether sagittal plane correction can be obtained from the front by overpowering previous posterior instrumentation and/or fusion with hyperlordotic anterior lumbar interbody fusion (ALIF) cages in patients undergoing revision surgery for degenerative spinal conditions and/or spinal deformities. METHODS The authors report their experience with the application of hyperlordotic cages at 36 lumbar levels for ALIFs in a series of 20 patients who underwent revision spinal surgery at a single institution. Included patients underwent staged front-back procedures: ALIFs with hyperlordotic cages (12°, 20°, and 30°) followed by removal of posterior instrumentation and reinstrumentation from the back. Patients were divided into the following 2 groups depending on the extent of posterior instrumentation and fusion during the second stage: long constructs (≥ 6 levels with extension into thoracic spine and/or pelvis) and short constructs (< 6 levels). Preoperative and postoperative standing radiographs were evaluated to measure segmental lordosis (SL) along with standard sagittal parameters. Radiographic signs of pseudarthrosis at previously fused levels were also sought in all patients. RESULTS The average patient age was 54 years (range 30-66 years). The mean follow-up was 11.5 months (range 5-26 months). The mean SL achieved with 12°, 20°, and 30° cages was 13.1°, 19°, and 22.4°, respectively. The increase in postoperative SL at the respective surgically treated levels for 12°, 20°, and 30° cages that were used to overpower posterior instrumentation/fusion averaged 6.1° (p < 0.05), 12.5° (p < 0.05), and 17.7° (p < 0.05), respectively. No statistically significant difference was found in SL correction at levels in patients who had pseudarthrosis (n = 18) versus those who did not (n = 18). The mean overall lumbar lordosis increased from 44.3° to 59.8° (p < 0.05). In the long-construct group, the mean improvement in sagittal vertical axis was 85.5 mm (range 19-249.3 mm, p < 0.05). Endplate impaction/collapse was noted in 3 of 36 levels (8.3%). The anterior complication rate was 13.3%. No neurological complications or vascular injuries were observed. CONCLUSIONS ALIF in which hyperlordotic cages are used to overpower posterior spinal instrumentation and fusion can be expected to produce an increase in SL of a magnitude that is roughly half of the in-built cage lordotic angle. This technique may be particularly suited for lordosis correction from the front at lumbar levels that have pseudarthrosis from the previous posterior spinal fusion. Meticulous selection of levels for ALIF is crucial for safely and effectively performing this technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.