Abstract

Comprehensive understanding of how the release of biochar-derived dissolved organic matter (BDOM) affects the immobilization of heavy metals when biochar (BC) is applied for long-term soil remediation is extremely important. In this study, BCs prepared under different pyrolysis temperatures were fractionated into residual BC (RBC), nano-sized BC (NBC), and BDOM, in order to clarify the contribution of BDOM for lead (Pb(II)) adsorption on BC and to explore the interfacial mechanisms. Results demonstrated that the adsorption capacity (Qe) of Pb(II) on BC improved from 166.1 to 423.9 mg g−1 with the increase in the pyrolysis temperature from 350 to 800 °C. The sum of Qe of Pb(II) on NBC and RBC was lower than that on BC, due to the complexation between BDOM and Pb(II) rather than pH variance and cation exchange. Ultraviolet–visible and fluorescence spectroscopy revealed that fulvic-like substances as well as small molecules with low aromaticity in BDOM underwent favorable association with Pb(II) and got re-adsorbed on RBC. With the increase in the Pb(II) concentration, the contribution of van der Waals interaction for adsorption of BDOM350-Pb complexes was improved, whereas adsorption mechanism in BDOM800-Pb complexes was more dependent on ligand exchange. This study provides mechanistic insights into the impact of BDOM on Pb(II) immobilization, which can provide valuable information for the long-term remediation of Pb-contaminated soils using BC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.