Abstract
We present a conjectured exact formula for overlaps between the Bethe states of the spin-1/2 XXZ chain and generic two-site states. The result takes the same form as in the previously known cases: it involves the same ratio of two Gaudin-like determinants, and a product of single-particle overlap functions, which can be fixed using a combination of the quench action and quantum transfer matrix methods. Our conjecture is confirmed by numerical data from exact diagonalization. For one-site states, the formula is found to be correct even in chains with odd length. It is also pointed out that the ratio of the Gaudin-like determinants plays a crucial role in the overlap sum rule: it guarantees that in the thermodynamic limit there remains no term in the quench action.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Statistical Mechanics: Theory and Experiment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.