Abstract
It is increasing important to identify automatically thematic structures from massive scientific literature. The interdisciplinarity enables thematic structures without natural boundaries. In this work, the identification of thematic structures is regarded as an overlapping community detection problem from the large-scale citation-link network. A mixed-membership stochastic blockmodel, armed with stochastic variational inference algorithm, is utilized to detect the overlapping thematic structures. In the meanwhile, in order to enhance readability, each theme is labeled with soft mutual information based method by several topical terms. Extensive experimental results on the astro dataset indicate that mixed-membership stochastic blockmodel primarily uses the local information and allows for the pervasive overlaps, but it favors similar sized themes, which disqualifies this approach from being used to extract the thematic structures from scientific literature. In addition, the thematic structures from the bibliographic coupling network is similar to those from the co-citation network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.