Abstract
Optical imaging in scattering media is important to many fields but remains challenging. Recent methods have focused on imaging through thin scattering layers or thicker scattering media with prior knowledge of the sample, but this still limits practical applications. Here, we report an imaging method named ‘speckle kinetography’ that enables high-resolution imaging in unknown scattering media with thicknesses up to about 6 transport mean free paths. Speckle kinetography non-invasively records a series of incoherent speckle images accompanied by object motion and the inherently retained object information is extracted through an overlapping speckle correlation algorithm to construct the object’s autocorrelation for imaging. Under single-colour light-emitting diode, white light, and fluorescence illumination, we experimentally demonstrate 1 μm resolution imaging and tracking of objects moving in scattering samples, while reducing the requirements for prior knowledge. We anticipate this method will enable imaging in currently inaccessible scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.