Abstract

Precision medicine has been a global trend of medical development, wherein cancer diagnosis plays an important role. With accurate diagnosis of cancer, we can provide patients with appropriate medical treatments for improving patients' survival. Since disease developments involve complex interplay among multiple factors such as gene-gene interactions, cancer classifications based on microarray gene expression profiling data are expected to be effective, and hence, have attracted extensive attention in computational biology and medicine. However, when using genomic data to build a diagnostic model, there exist several problems to be overcome, including the high-dimensional feature space and feature contamination. In this paper, we propose using the overlapping group screening (OGS) approach to build an accurate cancer diagnosis model and predict the probability of a patient falling into some disease classification category in the logistic regression framework. This new proposal integrates gene pathway information into the procedure for identifying genes and gene-gene interactions associated with the classification of cancer outcome groups. We conduct a series of simulation studies to compare the predictive accuracy of our proposed method for cancer diagnosis with some existing machine learning methods, and find the better performances of the former method. We apply the proposed method to the genomic data of The Cancer Genome Atlas related to lung adenocarcinoma (LUAD), liver hepatocellular carcinoma (LHC), and thyroid carcinoma (THCA), to establish accurate cancer diagnosis models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.