Abstract

Oncoretrovirus, but not lentivirus, displays a high transcriptional readthrough activity in the 3' long terminal repeat (LTR) (Zaiss et al. J. Virol. 76, 7209–7219, 2002). However, the U3-deleted, self-inactivating (SIN) lentiviral LTR also exhibits high transcriptional readthrough activity. Since the canonical "core" polyadenylation signal (AAUAAA) of the lentivirus is located in the R-U5 region, the above finding suggests that additional RNA termination signals must be present in the U3 region. Insertion of alternative termination signals including panhuman T cell leukemia virus type I polyadenylation signal, a 3' end small intron, and a tertiary tRNA motif into the lentiviral SIN LTR did not restore the transcriptional termination function. Functional dissection of the U3 region revealed that 70–80% of the termination signals reside in the transcriptional control region within 124 nt overlapping NFκB, Sp1 and TATA binding sites. Serial deletion analysis of the transcriptional control region indicates that the lentiviral enhancer/promoter elements are essential to the RNA termination function. These results characterize the mechanism of lentiviral transcriptional readthrough, which addresses important fundamental and practical issue of RNA readthrough influencing lentiviral gene function and vector safety.

Highlights

  • Lentiviral vectors (LVs) establish long-term transgene expression in both dividing and non-dividing cells

  • Extensive deletion of all of the viral genes and most of the long terminal repeat (LTR) elements are essential to the safety of this vector system [13]

  • The LV self-inactivating vector (SIN) LTR displays very high transcriptional readthrough (TR) activity [5], which potentially increases the risk of activating downstream cellular oncogenes

Read more

Summary

Introduction

Lentiviral vectors (LVs) establish long-term transgene expression in both dividing and non-dividing cells. Insertion of alternative transcriptional termination elements in the LV SIN LTR The RNA readthrough activity was determined using the sensitive Cre-loxP TE26 reporter cell line as previously described [5]. To test the effect of NFκB on transcriptional readthrough, TE26 and TE26-siNFκB cells were transfected with different amount of SIN LTR, U3C LTR or WT LTR rtCre plasmids and the readthrough activities were determined.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.