Abstract
Discovering overlapping community structures is a crucial step to understanding the structure and dynamics of many networks. In this paper we develop a symmetric binary matrix factorization model to identify overlapping communities. Our model allows us not only to assign community memberships explicitly to nodes, but also to distinguish outliers from overlapping nodes. In addition, we propose a modified partition density to evaluate the quality of community structures. We use this to determine the most appropriate number of communities. We evaluate our methods using both synthetic benchmarks and real-world networks, demonstrating the effectiveness of our approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.