Abstract

Although cognitive inhibition and response inhibition fall under the umbrella term of inhibition, the question remains whether the two aspects of inhibition engage shared or distinct brain regions. The current study is one of the first to examine the neural underpinnings of cognitive inhibition (e.g. the Stroop incongruency effect) and response inhibition (e.g. “no-go” response) within a single task. Adult participants (n = 77) completed an adapted version of the Simon Task in a 3T MRI scanner. The results demonstrated that cognitive and response inhibition recruited a group of overlapping brain regions (inferior frontal cortex, inferior temporal lobe, precentral cortex, parietal cortex). However, a direct comparison of cognitive and response inhibition revealed that the two aspects of inhibition also engaged distinct, task-specific brain regions (voxel-wise FWE corrected p < 0.05). Cognitive inhibition was associated with increases in multiple brain regions within the prefrontal cortex. On the other hand, response inhibition was associated with increases in distinct regions of the prefrontal cortex, right superior parietal cortex, and inferior temporal lobe. Our findings advance the understanding of the brain basis of inhibition by suggesting that cognitive inhibition and response inhibition engage overlapping but distinct brain regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call