Abstract

Compressive Sensing (CS) is a new technique that simultaneously senses and compresses an image by taking a set of random projections from the underlying scene. An optimization algorithm is then used to recover the initial image. In practice, these optimization algorithms have restricted CS techniques to be implemented on high performance computational architectures, such as personal computers or graphical processing units (GPU) due the huge number of operations required for the image recovery. This work extends the application of CS to be implemented in an extremely limited memory and processing architecture such as a mobile device. Specifically, overlapped blocking-based algorithms are developed such that it is possible to reconstruct an image on a mobile device. An analysis of the energy consumption of the block-based CS algorithms is presented. The results show the required computational time for reconstruction and the image reconstruction quality for images of 128x128 and 256x256 pixels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.