Abstract

Translocation, sea ranching, and assisted migration are under scrutiny as methods to augment populations so that harvests can be increased or populations can better adapt to changing environmental conditions. Understanding the ecological effects of any such environmental manipulation is critical to its successful application. One potential ecological effect of any type of stock enhancement is the displacement of either resident or released groups such that finding shelter or foraging habitat is adversely affected. This study examined behavioral interactions of resident and translocated Jasus edwardsii rock lobster after an introduction of 1,961 “small pale” phenotypic morphs to an area populated by the resident “large red” phenotypic morph. This translocation was an experimental stock enhancement conducted as part of a larger study to increase the yield and value of the fishery. Most translocated individuals established a home range within a couple of days of release (generally <2), and these ranges were generally less than 1.0 ha in size. Home-range kernels and foraging ranges overlapped between the two morphs, and there was no evidence of avoidance (Jacob's cohesion index 0.01, Z = 1.06, p = 0.28). This case of translocation for stock enhancement between ecotypes had no detectable adverse effect on either the resident or the translocated population, and in this species, stock enhancement could become part of an integrated conservation and harvest optimization strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call