Abstract

Modern large language models generate texts that are virtually indistinguishable from those written by humans and achieve near-human performance in comprehension and reasoning tests. Yet, their complexity makes it difficult to explain and predict their functioning. We examined a state-of-the-art language model (GPT-3) using lexical decision tasks widely used to study the structure of semantic memory in humans. The results of four analyses showed that GPT-3’s patterns of semantic activation are broadly similar to those observed in humans, showing significantly higher semantic activation in related (e.g., “lime–lemon”) word pairs than in other-related (e.g., “sour–lemon”) or unrelated (e.g., “tourist–lemon”) word pairs. However, there are also significant differences between GPT-3 and humans. GPT-3’s semantic activation is better predicted by similarity in words’ meaning (i.e., semantic similarity) rather than their co-occurrence in the language (i.e., associative similarity). This suggests that GPT-3’s semantic network is organized around word meaning rather than their co-occurrence in text.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.