Abstract
In the last decades, several physically based hydrological modeling approaches of various complexities have been developed that solve shallow water equations or their approximations using various numerical methods. Users of the model may not necessarily know the different hypotheses underlying these development and simplifications, and it might therefore be difficult to judge if a code is well adapted to their objectives and test case configurations. This paper aims to compare the predictive abilities of different models and evaluate potential gain by using an advanced numerical scheme for modeling runoff. Four different codes are presented, each based on either shallow water or kinematic wave equations, and using either the finite volume or finite difference method. These four numerical codes are compared with different test cases, allowing to emphasize their main strengths and weaknesses. Results show that, for relatively simple configurations, kinematic wave equations solved with the finite volume method represent an interesting option. Nevertheless, as it appears to be limited in case of discontinuous topography or strong spatial heterogeneities, for these cases they advise the use of shallow water equations solved with the finite volume method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.