Abstract

BackgroundThe trunk muscles are critical for postural control. Recent neurophysiological studies have revealed sparing of trunk muscle function in individuals with spinal cord injury (SCI) classified with thoracic or cervical motor-complete injuries. These findings raise the possibility for recruiting and retraining this spared trunk function through rehabilitation. Robotic gait training devices may provide a means to promote trunk muscle activation. Thus, the objective of this study was to characterize and compare the activation of the trunk muscles during walking with two robotic gait training devices (Ekso and Lokomat) in people with high thoracic motor-complete SCI.MethodsParticipants with chronic motor-complete paraplegia performed 3 speed-matched walking conditions: Lokomat-assisted walking, Ekso-assisted walking overground, and Ekso-assisted walking on a treadmill. Surface electromyography (EMG) signals were recorded bilaterally from the rectus abdominis (RA), external oblique (EO), and erector spinae (ES) muscles.ResultsGreater recruitment of trunk muscle EMG was elicited with Ekso-assisted walking compared to the Lokomat. Similar levels of trunk EMG activation were observed between Ekso overground and Ekso on the treadmill, indicating that differences between Ekso and Lokomat could not be attributed to the use of a hand-held gait aid. The level of trunk EMG activation during Lokomat walking was not different than that recorded during quiescent supine lying.ConclusionsEkso-assisted walking elicits greater activation of trunk muscles compared to Lokomat-assisted walking, even after controlling for the use of hand-held assistive devices. The requirement of the Ekso for lateral weight-shifting in order to activate each step could lead to better postural muscle activation.

Highlights

  • The trunk muscles are critical for postural control

  • A key finding from this study is that despite the fact that all of the spinal cord injury (SCI) participants enrolled in this study had high-thoracic, motorcomplete injuries, we showed that Ekso-assisted walking was effective in activating the trunk muscles, and that the level of activation facilitated was greater than that generated by attempted voluntary contraction of these muscles

  • Ekso is more effective than the Lokomat in engaging the trunk muscles the Lokomat and the Ekso are both used to facilitate gait training in people with SCI, they differ in the way they provide gait training

Read more

Summary

Introduction

The trunk muscles are critical for postural control. Recent neurophysiological studies have revealed sparing of trunk muscle function in individuals with spinal cord injury (SCI) classified with thoracic or cervical motorcomplete injuries. Recent studies using electromyography (EMG), ultrasound, or transcranial magnetic stimulation have revealed sparing of trunk muscle function in people with high-thoracic motor-complete SCI [6,7,8]. These findings open up the possibility for developing techniques to recruit and train this preserved function. In able-bodied individuals, the trunk muscles are rhythmically activated during walking to maintain upper body steadiness [9, 10], and the amplitude of trunk muscle activity increases with increasing gait speed as a result of the higher postural stability demands [11, 12] Robotic exoskeletons, such as the Lokomat® and EksoTM, are used to facilitate gait training

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.