Abstract
In this paper, we present Overgrid , a fully distributed peer-to-peer (P2P) architecture designed to automatically control and implement distributed demand response (DR) schemes in a community of smart buildings with energy generation and storage capabilities. As overlay networks in communications establish logical links between peers regardless of the physical topology of the network, the Overgrid is able to apply some power balance criteria to its system of buildings, as they belong to a virtual microgrid, regardless of their physical location. We exploit an innovative distributed algorithm, called flow updating, for monitoring the power consumption of the buildings and the number of nodes in the network, proving its applicability in an Overgrid scenario with realistic power profiles and networks of up to 10 000 buildings. To quantify the energy balance capability of Overgrid, we first study the energy characteristics of several types of buildings in our university campus and in an industrial site to accurately provide some reference buildings models. Then, we classify the amount of “flexible” energy consumption, i.e., the quota that could be potentially exploited for DR programs. Finally, we validate Overgrid emulating a real P2P network of smart buildings behaving according to our reference models. The experimental results prove the feasibility of our approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Automation Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.