Abstract

PurposeThe molecular mechanisms that are responsible for the initiation and progression of breast cancers are largely unknown. This study was to analyze the cyclin B1, cdc2, p53 and p16 tumor suppressor genes in human breast cancer.Materials and MethodsTo investigate the role of cyclin B1, cdc2, p53 and p16 in the pathogenesis and progression of breast carcinomas, 98 cases of breast cancers were examined by immunohistochemical method. The correlations of cyclin B1, cdc2, p53 and p16 expression with various clinico-pathologic findings were analysed.ResultsIn the normal breast tissues, cyclin B1, cdc2 and p16 were weakly expressed, while p53 was not expressed. On the other hand, cyclin B1, cdc2, p53 and p16 were overexpressed in breast cancer, showing correlation between the expression of cyclin B1 and cdc2 and breast cancers (p=0.00). The overexpressions of cdc2 and p16 were correlated with an infiltrative tumor border pattern and this was statistically significant (p<0.05). In addition, the overexpression of cdc2 was correlated with histologic high grade carcinomas (p=0.00).ConclusionCyclin B1 and cdc2 appeared to be involved in the genesis or progression of breast cancers. In addition, the overexpressions of p16 and p53 may play important roles in more aggressive tumor and the overexpression of cdc2 is associated with progression of tumor to a higher grade of breast carcinomas. The deranged overexpressions of cyclin B1, cdc2, p16 and p53 may play an important role in human breast carcinogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call