Abstract

X-linked inhibitor of apoptosis (XIAP) protects and preserves the function of neurons in both in vitro and in vivo models of excitotoxicity. Since calcium (Ca(2+)) overload is a pivotal event in excitotoxic neuronal cell death, we have determined whether XIAP over-expression influences Ca(2+)-signaling in primary cultures of mouse cortical neurons. Using cortical neuron cultures derived from wild-type (Wt) mice transiently transfected with XIAP or from transgenic mice that over-express XIAP, we show that XIAP opposes the rise in intracellular Ca(2+) concentration by a variety of triggers. Relative to control neurons, XIAP over-expression produced a slight, but significant, elevation of resting Ca(2+) concentrations. By contrast, the rise in intracellular Ca(2+) concentrations produced by N-methyl-D-aspartate receptor stimulation and voltage gated Ca(2+) channel activation were markedly attenuated by XIAP over-expression. The release of Ca(2+) from intracellular stores induced by the sarco/endoplasmic reticulum Ca(2+) ATPase inhibitor thapsigargin was also inhibited in neurons transiently transfected with XIAP. The pan-caspase inhibitor zVAD did not, however, diminish the rise in intracellular Ca(2+) concentrations elicited by L-glutamate suggesting that XIAP influences Ca(2+) signaling in a caspase-independent manner. Taken together, these findings demonstrate that the ability of XIAP to block excessive rises in intracellular Ca(2+) by a variety of triggers may contribute to the neuroprotective effects of this anti-apoptotic protein.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call