Abstract

A UDP-glucose pyrophosphorylase gene ( LgUGPase ) was identified from Larix gmelinii, and its function in enhancing vegetative growth and cellulose biosynthesis was confirmed by analyzing transgenic Arabidopsis thaliana overexpressed LgUGPase . UDP-glucose pyrophosphorylase (UGPase), an important regulatory enzyme in carbohydrate metabolism, catalyzes the reversible production of glucose 1-phosphate and the conversion of uridine triphosphate to uridine diphosphate glucose and pyrophosphate. In this study, a larch UGPase (LgUGPase) gene was isolated from Larix gmelinii. The 1,443-bp open reading frame encodes a protein of 480 amino acids with a predicted molecular weight of 53.7 kDa and shows striking sequence similarity to UGPase proteins from Pinus taeda and Picea sitchensis. Semiquantitative reverse transcription-polymerase chain reaction showed that the LgUGPase gene was expressed primarily in the larch stem in addition to its root and leaf. Southern blot analysis indicated that LgUGPase is encoded by two genes in the L. gmelinii genome. Overexpression of LgUGPase enhanced vegetative growth in transgenic Arabidopsis and increased the contents of soluble sugars and cellulose, and thickened parenchyma cell walls. These results revealed that L. gmelinii UGPase participates in sucrose/polysaccharide metabolism and cell wall biosynthesis, suggesting that LgUGPase may be a good candidate gene for improvement of fiber cell development in plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call