Abstract

Formation of the contractile apparatus in muscle cells requires co-ordinated activation of several genes and the proper assembly of their products. To investigate the role of TnT (troponin T) in the mechanisms that control and co-ordinate thin-filament formation, we generated transgenic Drosophila lines that overexpress TnT in their indirect flight muscles. All flies that overexpress TnT were unable to fly, and the loss of thin filaments themselves was coupled with ultrastructural perturbations of the sarcomere. In contrast, thick filaments remained largely unaffected. Biochemical analysis of these lines revealed that the increase in TnT levels could be detected only during the early stages of adult muscle formation and was followed by a profound decrease in the amount of this protein as well as that of other thin-filament proteins such as tropomyosin, troponin I and actin. The decrease in thin-filament proteins is not only due to degradation but also due to a decrease in their synthesis, since accumulation of their mRNA transcripts was also severely diminished. This decrease in expression levels of the distinct thin-filament components led us to postulate that any change in the amount of TnT transcripts might trigger the down-regulation of other co-regulated thin-filament components. Taken together, these results suggest the existence of a mechanism that tightly co-ordinates the expression of thin-filament genes and controls the correct stoichiometry of these proteins. We propose that the high levels of unassembled protein might act as a sensor in this process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call