Abstract
Trehalose plays an important role in metabolic regulation and abiotic stress tolerance in a variety of organisms. In plants, its biosynthesis is catalyzed by two key enzymes: trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP). The genome of rice (Oryza sativa) contains 11 OsTPS genes, and only OsTPS1 shows TPS activity. To demonstrate the physiological function of OsTPS1, we introduced it into rice and found that OsTPS1 overexpression improved the tolerance of rice seedling to cold, high salinity and drought treatments without other significant phenotypic changes. In transgenic lines overexpressing OsTPS1, trehalose and proline concentrations were higher than in the wild type and some stress-related genes were up-regulated, including WSI18, RAB16C, HSP70, and ELIP. These results demonstrate that OsTPS1 may enhance the abiotic stress tolerance of plants by increasing the amount of trehalose and proline, and regulating the expression of stress-related genes. Furthermore, we found that overexpression of some Class II TPSs also enhanced plant tolerance of abiotic stress. This work will help to clarify the role of trehalose metabolism in abiotic stress response in higher plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.