Abstract

We have characterized the cell cycle deficit of a novel TrkA receptor mutant (TrkAS3) that fails to support nerve growth factor (NGF)-dependent cell cycle arrest and neurite outgrowth. TrkAS3 receptors fail to support an NGF-dependent increase in the expression of cyclin D1 and the cell cycle inhibitor, p21(Waf1/Cip1), two important regulators of G(1) /S transition, and do not down-regulate expression of the G(2) /M phase marker, cdc2/cdk1, or the S phase marker, proliferating cell nuclear antigen. Moreover, NGF-activated TrkAS3 receptors do not down-regulate cyclin-dependent kinase 4 phosphorylation of the retinoblastoma protein, essential for G(1) arrest, in comparison to NGF-activated wild-type TrkA. Collectively these data indicate that TrkAS3 receptors fail to support NGF-dependent G(1) arrest. Interestingly, ectopic expression of regulators of G(1) /S arrest, such as cyclin D1 or inhibitors of cell cycle (p21(Waf1/Cip1), p16(INK4A) ), or the fibroblast growth factor (FGF) receptor substrate-2 (FRS2) in cells expressing TrkAS3 reconstitutes NGF-dependent neurite outgrowth. Collectively, these data suggest a model in which NGF-stimulated TrkA-dependent activation of FRS2 supports neurite outgrowth through a mechanism that likely involves the induction of p21(Waf1/Cip1) expression and the arrest of cells at G(1) /S.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.