Abstract
Mechanical ventilation with high tidal volumes (HV(T)) impairs lung liquid clearance (LLC) and downregulates alveolar epithelial Na-K-ATPase. We have previously reported that the Na-K-ATPase alpha(2)-subunit contributes to LLC in normal rat lungs. Here we tested whether overexpression of Na-K-ATPase alpha(2)-subunit in the alveolar epithelium would increase clearance in a HV(T) model of lung injury. We infected rat lungs with a replication-incompetent adenovirus that expresses Na-K-ATPase alpha(2)-subunit gene (Adalpha(2)) 7 days before HV(T) mechanical ventilation. HV(T) ventilation decreased LLC by approximately 50% in untreated, sham, and Adnull-infected rats. Overexpression of Na-K-ATPase alpha(2)-subunit prevented the decrease in clearance caused by HV(T) and was associated with significant increases in Na-K-ATPase alpha(2) protein abundance and activity in peripheral lung basolateral membrane fractions. Ouabain at 10(-5) M, a concentration that inhibits the alpha(2) but not the Na-K-ATPase alpha(1), decreased LLC in Adalpha(2)-infected rats to the same level as sham and Adnull-infected lungs, suggesting that the increased clearance in Adalpha(2) lungs was due to Na-K-ATPase alpha(2) expression and activity. In summary, we provide evidence that augmentation of the Na-K-ATPase alpha(2)-subunit, via gene transfer, may accelerate LLC in the injured lung.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Lung Cellular and Molecular Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.