Abstract

Myocytes from failing hearts produce slower and smaller Ca(2+) transients associated with reduction in expression of sarcoplasmic reticulum (SR) Ca(2+) ATPase and an overexpression of Na(+)/Ca(2+) exchanger. Since the physiological role of both these proteins is competing for, and removing, Ca(2+) from the cytoplasm, overexpression of the exchanger may compensate for less effective SR Ca(2+) uptake. This study demonstrates this compensatory effect and provides a quantitative description of the results. Ventricular myocytes from transgenic mice overexpressing the Na(+)/Ca(2+) exchanger (TR) and nontransgenic littermates (NON) were used. Cell shortening, cytoplasmic [Ca] (using indo-1 AM) and electrophysiological parameters were monitored. TR myocytes displayed faster Ca(2+) transients and twitches compared with NON myocytes. Superfusion with thapsigargin prolonged the time-course of Ca(2+) transients of TR myocytes until these were equal to the ones measured in NON myocytes. The amount of SR Ca(2+)-ATPase (SERCA) inhibition needed to obtain such transients was calculated as a function of V(max) for the Ca(2+) flux via SERCA and found to be 28%. In TR myocytes V(max) for the Ca(2+) flux via Na(+)/Ca(2+)exchange was 240% of NON myocytes. When Ca(2+) transients in TR myocytes were slowed by thapsigargin to similar values to the ones recorded in NON myocytes, SR Ca(2+) content was also correspondingly reduced. The results suggest that in pathophysiological conditions where there is a reduction in SERCA function, overexpression of Na(+)/Ca(2+) exchanger can compensate and allow normal Ca(2+) homeostasis to be maintained. In mouse ventricular myocytes a 2.4-fold increase in Na(+)/Ca(2+) exchange activity compensates for a reduction in SERCA function by 28% so maintaining the duration of the Ca(2+) transient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.