Abstract

The p70 ribosomal S6 kinase (p70(s6k)) signaling pathway plays a key role in regulating the cell cycle via translational regulation of specific 5'TOP mRNAs. However, the function of this signaling pathway is still poorly understood in plants. Ectopic expression of the lily putative p70(s6k) gene, LS6K1, resulted in up-regulation of NAP (NAC-LIKE, ACTIVATED BY AP3/PI) and PISTILLATA (PI) expression, and significantly inhibited cell expansion for petals and stamens, resulting in the male sterility phenotype in transgenic Arabidopsis. Sequence analysis revealed that the genes involved in petal and stamen development, such as APETALA3 (AP3), PI and SUPERMAN (SUP), probably encode 5'TOP mRNAs. Green fluorescent protein (GFP), fused to oligopyrimidine tract sequences that were identified in the 5'-untranslated region (UTR) of AP3, PI and SUP, was translationally regulated in human cells in response to mitogen stimulation and inhibition by the macrolide antibiotic rapamycin. Furthermore, 35S::LS6K1 significantly up-regulated beta-glucuronidase (GUS) activity in the flower buds of transgenic plants carrying the GUS transgene fused to the AP3 promoter and the 5' UTR. These results have identified a novel role for the p70(s6k) gene in regulating cell division and the expansion of petals and stamens by translational regulation of the 5'TOP mRNAs once ectopically expressed in Arabidopsis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.