Abstract
A systematic and combinatorial optimization has been employed to metabolically engineer microbes for identifying key gene targets for overexpression to increase the intermediate pools for terpenoid production. Herein, the methylerythritol 4-phosphate (MEP) pathway in Corynebacterium glutamicum, an industrial host, was investigated to identify the key genes whose overexpression would improve the production of farnesyl diphosphate (FPP)-derived terpenoids (squalene and α-farnesene). Using a combinatorial approach with the single, double, and triple expression of genes in the MEP pathway in a high-throughput fermentation, overexpression of the ispDF genes, along with the known dxs and idi genes, was most effective at increasing the squalene contents, i.e., by 14-fold. The dxr gene was identified as the key target enzyme for α-farnesene production. This result could provide fundamental information for improving the metabolic engineering of C. glutamicum for terpene production via an optimized MEP pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.