Abstract
The neuropeptides vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) belong to a superfamily of structurally related peptide hormones that includes glucagon, glucagon-like peptides, secretin, and growth hormone-releasing hormone. Microinjection of VIP or PACAP into the rodent suprachiasmatic nucleus (SCN) phase shifts the circadian pacemaker and VIP antagonists, and antisense oligodeoxynucleotides have been shown to disrupt circadian function. VIP and PACAP have equal potency as agonists of the VPAC(2) receptor (VPAC(2)R), which is expressed abundantly in the SCN, in a circadian manner. To determine whether manipulating the level of expression of the VPAC(2)R can influence the control of the circadian clock, we have created transgenic mice overexpressing the human VPAC(2)R gene from a yeast artificial chromosome (YAC) construct. The YAC was modified by a strategy using homologous recombination to introduce (i) the HA epitope tag sequence (from influenza virus hemagglutinin) at the carboxyl terminus of the VPAC(2)R protein, (ii) the lacZ reporter gene, and (iii) a conditional centromere, enabling YAC DNA to be amplified in culture in the presence of galactose. High levels of lacZ expression were detected in the SCN, habenula, pancreas, and testis of the transgenic mice, with lower levels in the olfactory bulb and various hypothalamic areas. Transgenic mice resynchronized more quickly than wild-type controls to an advance of 8 h in the light-dark (LD) cycle and exhibited a significantly shorter circadian period in constant darkness (DD). These data suggest that the VPAC(2)R can influence the rhythmicity and photic entrainment of the circadian clock.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.