Abstract

Co- and posttranslational regulation of apolipoprotein B (apoB) has been postulated to involve degradation by both proteasomal and nonproteasomal pathways; however, nonproteasomal mechanisms of apoB degradation are currently unknown. We have previously demonstrated an intracellular association of newly synthesized apoB with endoplasmic reticulum (ER)-60, an ER-localized protein, possessing both proteolytic and chaperone activities. In the present paper, adenoviral expression vectors containing rat ER-60 cDNA were used to achieve dose- and time-dependent overexpression of ER-60 to investigate its role in apoB100 turnover. Overexpressed ER-60 accumulated in the microsomal lumen of HepG2 cells and was associated with apoB100 in dense lipoprotein particles. Overexpression of ER-60 in HepG2 cells significantly reduced both intracellular and secreted apoB100, with no effect on the secretion of a control protein, albumin. Similar results were obtained in McA-RH7777 rat hepatoma cells. ER-60-stimulated apoB100 degradation and inhibition of apoB100 secretion were sensitive to the protease inhibitor, p-chloromercuribenzoate (pCMB), in a dose-dependent manner but were unaffected by the proteasomal or lysosomal protease inhibitors, N-acetyl-leucinyl-leucinyl-nor-leucinal, E64, and leupeptin. Interestingly, enhanced expression of ER-60 induced apoB100 fragmentation in permeabilized HepG2 cells and resulted in detection of a unique 50 kDa degradation intermediate, a process that could be inhibited by pCMB. Intracellular stability and secretion of apoB100 in primary hamster hepatocytes were also found to be sensitive to pCMB. When taken together, the data suggest an important role for ER-60 in promoting apoB100 degradation via a pCMB-sensitive process in the ER. ER-60 may act directly as a protease or may be involved indirectly as a chaperone/protein factor targeting apoB100 to this nonproteasomal and pCMB-sensitive degradative pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.