Abstract
In plants, sucrose synthase (SUS, EC 2.4.1.13) is widely considered a multifunctional protein involved in modulating sink strength, cellulose biosynthesis, and carbon partitioning. However, supporting genetic evidence regarding the role of SUS from bamboo in fiber development is lacking. Here, we obtained transgenic poplar lines overexpressing the bamboo BeSUS5 gene and conducted functional analysis. We found that overexpression of BeSUS5 enhanced the activity of SUS and significantly promoted the growth of the plants, especially xylem growth. In BeSUS5 overexpressed poplar plants, the total soluble sugar (TSS) and starch contents were decreased in leaves, while the cellulose content was increased in stems, indicating that overexpression of BeSUS5 might enhance the partitioning of carbon to cellulose in poplar. Consistent with these results, the expression of cellulose biosynthesis and phloem loading–related genes, such as cellulose synthase (CesA7), KORRIGAN (KOR), and sucrose transporter (SUT1), was upregulated in transgenic plants. As a result, transgenic poplars displayed not only an increase in cell wall thickness and cell wall crystallinity but also an altered stem fiber phenotype. Taken together, our results imply the vast potential of BeSUS5 for the genetic improvement of wood cellulose production and fiber quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.