Abstract
Previously, we found that the flood resistance of eggplant (Solanum melongena) and sponge gourd (Luffa cylindrica) enhanced ascorbate peroxidase (APX) activity under flooding, and consequently, both the SmAPX and LcAPX genes were cloned. In this study, the SmAPX and LcAPX genes were transferred under a ubiquitin promoter to Arabidopsis (At) via Agrobacterium tumefaciens. The expression and amount of APX and APX activities of the SmAPX and LcAPX transgenic lines were significantly higher than those of non-transgenic (NT) plants under a waterlogged condition. Furthermore, the SmAPX, LcAPX, At-sucrose synthases (SUS)-1, phosphoenolpyruvate carboxylase (PEPC), and lactate dehydrogenase (LDH) genes were overexpressed in all transgenic Arabidopsis lines after flooding treatment. Compared to NT plants, the malondialdehyde (MDA) contents and H2O2 accumulation were significantly lower, but germination rates were significantly higher in all transgenic lines with higher APX activity, indicating that the overexpression of SmAPX and LcAPX in Arabidopsis could enhance flood tolerance by eliminating H2O2. Moreover, Arabidopsis seedlings overexpressing SmAPX and LcAPX also displayed greater resistance to flooding and less oxidative injury than NT plants subjected to flooding condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.