Abstract
Rosa rugosa has always been an important plant in landscape application, and the improvements and innovations about its flower color are particularly important. Glycosylation modification fulfills an important role in increasing the stability and solubility of anthocyanin in plants. In this study, based on the transcriptional database of R. rugosa, a gene with full length cDNA of 1161 bp, encoding 386 amino acids, designated as RrGT1, were isolated from flowers of R. rugosa “Zizhi” and then functionally characterized. Sequence alignments with the NCBI database show that the RrGT1 protein is a member of the GTB superfamily and has typical conserved amino acid residues called PSPG that are crucial for RrGT1 enzyme activity. RrGT1 transcripts were detected in five flowering stages and seven tissues of R. rugosa “Zizhi” and their expression patterns corresponded with the accumulation of anthocyanins. Additionally, the in vivo function of RrGT1 was investigated via its overexpression in tobacco. Transgenic tobacco plants expressing RrGT1 induced anthocyanin accumulation in flowers, indicating that RrGT1 could encode a functional glycosyltransferase (GT) protein for anthocyanin biosynthesis and could function in other species. Therefore, we speculated that glycosylation of RrGT1 played a crucial role in anthocyanin biosynthesis in R. rugosa.
Highlights
Rosa rugosa is an important ornamental plant which belongs to the genus Rosa in the family Rosaceae
Sequence alignments with the NCBI database showed the RrGT1 protein is a member of the GTB superfamily and has a typical plant secondary product glycosyltransferases conserved domain called PSPG consisting of 44 amino acid residues at the C-terminal
The final formation of anthocyanins depends on the glycosylation of GTs, so it is very important to elucidate the function and influence of the RrGT1 gene in R. rugosa color formation
Summary
Rosa rugosa is an important ornamental plant which belongs to the genus Rosa in the family Rosaceae. There are many varieties of roses, but most of them are traditional colors such as pink, purple, etc. A few varieties are white, lacking yellow, bright red, orange and compound color, etc. The analysis of the pigment composition of rose and the study of the expression characteristics of the key enzymes encoding genes that catalyze the synthesis of rose pigment are the important prerequisite for rose color oriented molecular breeding [3]. Anthocyanin determines the color of higher plant organs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.