Abstract

Monoterpenes are important components of plant essential oils and have long been used as raw materials for spices and food flavorings. A number of studies have been performed to increase the content of monoterpenes in plants, but no obvious effect was observed. Exchange was observed between the methylerythritol phosphate (MEP) and mevalonic acid (MVA) metabolic pathways, which produce monoterpenes and sesquiterpenes, respectively. However, the specific details of the communication have not been elucidated. In the present study, we investigated the effects of overexpressing Litsea cubeba (Lour.) Persoon 3-hydroxy-3-methylglutaryl-coenzyme A synthase (LcHMGS) on the production of monoterpenes and sesquiterpenes. In addition, we also explored the flow of metabolic flux between the MEP and MVA pathways. We cloned LcHMGS and analyzed its expression pattern in various tissues. The overexpression of LcHMGS significantly increased the species and content of monoterpenes and sesquiterpenes. In addition, LcHMGS overexpression in plants induced such phenotypes as excessive growth, enlarged vegetative organs and early flowering by elevating the GA3 content. Our results demonstrate a metabolic engineering strategy to improve the yield of monoterpenes and sesquiterpenes and simultaneously increase the biomass of plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.