Abstract
Human TAP and its yeast orthologue Mex67p are members of the multigene family of NXF proteins. A conserved feature of NXFs is a leucine-rich repeat domain (LRR) followed by a region related to the nuclear transport factor 2 (the NTF2-like domain). The NTF2-like domain of metazoan NXFs heterodimerizes with a protein known as p15 or NXT. A C-terminal region related to ubiquitin-associated domains (the UBA-like domain) is present in most, but not all NXF proteins. Saccharomyces cerevisiae Mex67p and Caenorhabditis elegans NXF1 are essential for the export of messenger RNA from the nucleus. Human TAP mediates the export of simian type D retroviral RNAs bearing the constitutive transport element, but the precise role of TAP and p15 in mRNA nuclear export has not yet been established. Here we show that overexpression of TAP/p15 heterodimers bypasses nuclear retention and stimulates the export of mRNAs that are otherwise exported inefficiently. This stimulation of mRNA export is strongly reduced by removing the UBA-like domain of TAP and abolished by deleting the LRR domain or the NTF2-like domain. Similar results are obtained when TAP/p15 heterodimers are directly tethered to the RNA export cargo. Our data indicate that formation of TAP/p15 heterodimers is required for TAP-mediated export of mRNA and show that the LRR domain of TAP plays an essential role in this process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.