Abstract
Soil salinization is an important threat to wheat growth and production. Previous transcriptome analysis showed that the expression of the betaine aldehyde dehydrogenase (BADH) gene differed significantly between cultivars with strong or weak salinity tolerance. Herein, the BADH gene from the wheat cultivar Dongnongdongmai 1 was cloned and transformed into wild-type Arabidopsis to identify its function in salt tolerance. Root length was calculated at 0, 50, 100, 150, and 200 mmol L−1 NaCl for 7 d. The relative electrolytic leakage (REL), GB content, and BADH activity were measured at 150 mmol L−1 NaCl for 1 and 3 d. It was determined that BADH activity and the GB content of TaBADH-overexpressed transgenic (TaBADHOE) lines were significantly higher than in wild-type lines. Salt stress analysis showed that the root length of TaBADHOE lines 4, 18, and 19 were 0.44, 0.54, and 0.35 cm, respectively, which were significantly longer than the 0.24 cm roots of the wild-type line in the media containing 150 mmol L−1 NaCl for 7 d. In addition, the RELs of transgenic lines 4, 18, and 19 were 0.37, 0.33, and 0.42, respectively, which is significantly lower than the 0.63 of the wild-type line in media containing 150 mmol L−1 NaCl for 3 d. These results demonstrate that TaBADH significantly increased plant salt tolerance, indicating that genetic transformation of TaBADH may be an effective and sustainable breeding method for increasing salt tolerance in wheat cultivars.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.