Abstract

Secretory class III peroxidases are involved in plant responses to a range of biological stress conditions, including oxidative stress. To investigate the stress-related functions of the swpa4 peroxidase gene in sweetpotato (Ipomoea batatas L.), transgenic plants overexpressing the swpa4 gene under the control of the CaMV 35S promoter were generated using Agrobacterium-mediated transformation. Peroxidase activity was 3- to 13-fold higher in transgenic lines than in control plants. Transgenic plants were tested for tolerance to stress. Following treatment with 400 mM hydrogen peroxide (H2O2), leaf discs from transgenic plants showed approximately 13–26% less damage than control plants. Transgenic plants also showed enhanced tolerance to high salinity conditions. Following treatment with NaCl, photosynthetic capacity and total chlorophyll contents were less severely impacted in swpa4 transgenic plants than in control plants. Aerial plant parts and storage root yields were not significantly different between transgenic and control plants following cultivation in field conditions. These results indicate that transgenic sweetpotato lines were able to respond efficiently to oxidative and saline stress via overexpression of swpa4.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call