Abstract

Background Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and more prevalent among males than females. However, the biological role of enzyme 5α-reductase (SRD5A3), which plays a critical role in the androgen receptor signaling pathway during HCC development, remains poorly understood. Methods ONCOMINE, GEPIA, UALCAN, and Kaplan–Meier Plotter were used to analyze the expression and prognostic value of SRD5A3 in HCC. STRING and Metascape were applied to analyze potential target and molecular pathways underlying SRD5A3 in HCC. A real-time quantitative reverse transcription-polymerase chain reaction was used to validate the downstream target expression of SRD5A3. Results The expression of SRD5A3 was significantly overexpressed in HCC tissues compared with normal tissues, while the expression of SRD5A1 and SRD5A2 were downregulated in multiple public datasets. It may be that the low methylation of the SRD5A3 promoter leads to its overexpression. The level of SRD5A3 tended to be higher expressed in clinical samples with advanced stage and positive node metastasis. Furthermore, the patients with higher SRD5A3 were remarkably associated with poorer overall survival and disease-free survival in the TCGA data. In addition, the increased mRNA expression of SRD5A3 could predict poorer overall survival in Kaplan–Meier Plotter database including different patient cohorts. Moreover, HCC patients with higher level of SRD5A3 had significantly shorter recurrence-free survival, progression-free survival, and disease-specific survival. Furthermore, enrichment analysis demonstrated that multiple processes, such as steroid hormone biosynthesis, lipid biosynthetic process, and androgen metabolic process, were affected by SRD5A1-3 alterations. In vitro experiments showed that the expression of SRD5A3 was increased in HCC tissues than that in adjacent tissues. SRD5A3 silencing promoted the expression of DOLK in two HCC cell lines. Conclusions This study identified SRD5A3/DOLK as a novel axis to regulate HCC development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call