Abstract

microRNA398 (miR398) is known to be involved in response to abiotic stress in some plant species through transcriptionally regulating its targets, Cu/Zn superoxide dismutase (CSD). However, the role of miR398 has not yet been characterized in horticultural plants. It also remains unclear as how miR398 regulate antioxidant system and photosynthesis under salinity. To address this issue, we generated transgenic tomato lines overexpressing its own miR398 and exposed them to salt stress. Overexpression of sly-miR398b inhibited the plant growth under salinity, including less shoot and root biomass and shorter plant height. In addition, the transgenic plants accumulated more O2− under normal and saline conditions, and consequently suffered from more severe oxidative damage. Further analyses revealed that overexpression of sly-miR398b downregulated the expression of CSD, APX and CAT, leading to the reduced activities of SOD, APX and CAT, and the contents of reduced glutathione. In addition, the transgenic plants exhibited lower rates of photosynthesis and higher photoinhibition under salinity in comparison with the wild type plants. The data provide new evidence on the miR398 mediated ROS metabolism network underlying salt stress response in tomato.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.