Abstract

Heat stress is one of the major limiting factors that affect plant growth and production. In this study, we identified SlBBX17, which encodes a B-Box (BBX) protein and functions as a negative regulator of plant growth and a positive regulator of heat tolerance in tomato (Solanum lycopersicum). The expression of SlBBX17 is induced by hormones and heat stress. Overexpression of SlBBX17 (SlBBX17-OE) in tomato led to less chlorophyll content and lower net photosynthetic rate relative to the wild type. The growth retardation in the SlBBX17-OE plants may be attributed to the change of endogenous gibberellin (GA) metabolism and the decrease of photosynthetic capacity. SlBBX17-OE plants exhibited increased tolerance to heat stress, as reflected by the better membrane stability, higher antioxidant enzyme activities, and less reactive oxygen species (ROS) accumulation. Transcriptome analysis revealed that overexpression of SlBBX17 affected the expression of genes involved in GA biosynthetic process, photosynthesis, heat stress, ROS, and other cellular processes. The qRT-PCR analysis indicated that many SlHsf and SlHSP genes are up-regulated by SlBBX17 under heat stress. These results demonstrate that SlBBX17 plays important roles in regulating tomato growth and resistance to heat stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.