Abstract

Dehydrins (DHNs) play important roles in plant adaptation to abiotic stress. In this study, a cold-induced SK3-type DHN gene (ShDHN) isolated from wild tomato species Solanum habrochaites was characterized for its function in abiotic stress tolerance. ShDHN was constitutively expressed in root, leaf, stem, flower and fruit. ShDHN was continuously up-regulated during cold stress and showed higher expression level in the cold-tolerant S. habrochaites than in the susceptible S. lycopersicum. Moreover, ShDHN expression was also regulated by drought, salt, osmotic stress, and exogenous signaling molecules. Overexpression of ShDHN in cultivated tomato increased tolerance to cold and drought stresses and improved seedling growth under salt and osmotic stresses. Compared with the wild-type, the transgenic plants accumulated more proline, maintained higher enzymatic activities of superoxide dismutase and catalase, and suffered less membrane damage under cold and drought stresses. Moreover, the transgenic plants accumulated lower levels of H2O2 and O2− under cold stress, and had higher relative water contents and lower water loss rates under dehydration conditions. Furthermore, overexpression of ShDHN in tomato led to the up- or down-regulated expression of several genes involved in ROS scavenging and JA signaling pathway, including SOD1, GST, POD, LOX, PR1 and PR2. Taken together, these results indicate that ShDHN has pleiotropic effects on improving plant adaptation to abiotic stresses and that it possesses potential usefulness in genetic improvement of stress tolerance in tomato.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call