Abstract

NK/T cell lymphoma (NKTCL) represents an aggressive lymphoid malignancy characterized by dismal prognosis. Immune-checkpoint blockade has shown promising efficacy in NKTCL. However, the molecular mechanisms underlying immune evasion in NKTCL have never been explored. Here, proteomic analysis was used to identify the differentially expressed proteins between NKTCL patients and healthy individuals. We found that S100A9, an immunosuppressive molecule, was much higher in NKTCL patients both in serum and tumor stroma. Elevated level of S100A9 was associated with advanced stage, poor overall response and early recurrence. Moreover, percentage of myeloid-derived suppressor cells (MDSCs) in peripheral blood was positively correlated with levels of S100A9. Low concentration of S100A9 promoted proliferation of NKTCL cells, while did not affect cell apoptosis and cell cycles. Furthermore, programmed death ligand 1 (PD-L1) expression on NKTCL cells was up-regulated by S100A9 through activation of ERK1/2 signaling. Inhibition of ERK1/2 signaling significantly decreased tumor growth and PD-L1 expression induced by S100A9. In conclusion, our research firstly identified S100A9 as an immune suppressor in the tumorigenesis of NKTCL via accumulation of MDSCs and upregulation of PD-L1 expression. S100A9 may serve as a potential target to increase the efficacy of immunotherapy in NKTCL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.