Abstract

The basic helix-loop-helix (bHLH) family of transcription factors (TFs) plays a crucial role in regulating plant response to abiotic stress by targeting a large spectrum of stress-responsive genes. However, the physiological mechanisms underlying the TF-mediated stress response are still poorly understood for most of the bHLH genes. In this study, transgenic pummelo (Citrus grandis) plants overexpressing PtrbHLH, a TF previously identified from Poncirus trifoliata, were generated via Agrobacterium-mediated transformation. In comparison with the wild-type plants, the transgenic lines exhibited significantly lower electrolyte leakage and malondialdehyde content after cold treatment, thereby resulting in a more tolerant phenotype. Meanwhile, the transgenic lines accumulated dramatically lower reactive oxygen species (ROS) levels, consistent with elevated activity and expression levels of antioxidant enzymes (genes), including catalase (CAT), peroxidase and superoxide dismutase. In addition, PtrbHLH was shown to specifically bind to and activate the promoter of PtrCAT gene. Taken together, these results demonstrated that overexpression of PtrbHLH leads to enhanced cold tolerance in transgenic pummelo, which may be due, at least partly, to modulation of ROS levels by regulating the CAT gene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.