Abstract

BackgroundFBI-1 (factor that binds to the inducer of short transcripts of human immunodeficiency virus-1) is a member of the POK (POZ and Kruppel) family of transcription factors and play important roles in cellular differentiation and oncogenesis. Recent evidence suggests that FBI-1 is expressed at high levels in a subset of human lymphomas and some epithelial solid tumors. However, the function of FBI-1 in human ovarian cancers remains elusive.ResultsIn this study, we investigated the role of FBI-1 in human ovarian cancers, in particularly, its function in cancer cell invasion via modulating membrane type 1-matrix metalloproteinase (MT1-MMP). Significantly higher FBI-1 protein and mRNA expression levels were demonstrated in ovarian cancers samples and cell lines compared with borderline tumors and benign cystadenomas. Increased FBI-1 mRNA expression was correlated significantly with gene amplification (P = 0.037). Moreover, higher FBI-1 expression was found in metastatic foci (P = 0.036) and malignant ascites (P = 0.021), and was significantly associated with advanced stage (P = 0.012), shorter overall survival (P = 0.032) and disease-free survival (P = 0.016). In vitro, overexpressed FBI-1 significantly enhanced cell migration and invasion both in OVCA 420 and SKOV-3 ovarian carcinoma cells, irrespective of p53 status, accompanied with elevated expression of MT1-MMP, but not MMP-2 or TIMP-2. Moreover, knockdown of MT1-MMP abolished FBI-1-mediated cell migration and invasion. Conversely, stable knockdown of FBI-1 remarkably reduced the motility of these cells with decreased expression of MT1-MMP. Promoter assay and chromatin immunoprecipitation study indicated that FBI-1 could directly interact with the promoter spanning ~600bp of the 5'-flanking sequence of MT1-MMP and enhanced its expression in a dose-dependent manner. Furthermore, stable knockdown and ectopic expression of FBI-1 decreased and increased cell proliferation respectively in OVCA 420, but not in the p53 null SKOV-3 cells.ConclusionsOur results suggested an important role of FBI-1 in ovarian cancer cell proliferation, cell mobility, and invasiveness, and that FBI-1 can be a potential target of chemotherapy.

Highlights

  • FBI-1 is a member of the POK (POZ and Kruppel) family of transcription factors and play important roles in cellular differentiation and oncogenesis

  • Our results suggested an important role of FBI-1 in ovarian cancer cell proliferation, cell mobility, and invasiveness, and that FBI-1 can be a potential target of chemotherapy

  • We showed that FBI-1 interacted and activated membrane type 1-matrix metalloproteinase (MT1-matrix metalloproteinases (MMPs)), increased cell motility and invasion of ovarian cancer

Read more

Summary

Introduction

FBI-1 (factor that binds to the inducer of short transcripts of human immunodeficiency virus-1) is a member of the POK (POZ and Kruppel) family of transcription factors and play important roles in cellular differentiation and oncogenesis. Recent evidence suggests that FBI-1 is expressed at high levels in a subset of human lymphomas and some epithelial solid tumors. The function of FBI-1 in human ovarian cancers remains elusive. It has been established that the matrix metalloproteinases (MMPs), including Membrane-type-1 MMP (MT1-MMP or MMP14) and MMP-2, play a critical role in degrading the basement membrane and the extracellular matrix (ECM), resulting in tumor cell dissemination and outgrowth of secondary cancers [3,4]. As in other solid cancers, MT1-MMP has been reported to be widely expressed in ovarian cancers and related malignant ascites of all histological types, but not in normal ovarian epithelium or benign tumors [9,10,11,12]. Despite the central role of MT1-MMP in these cancer metastases, little is known about its transcriptional regulators [13]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.