Abstract

Drought and salinity are the major abiotic stresses, which reduce agricultural productivity. In plants, 14-3-3s function as regulators of many target proteins through direct protein-protein interactions and play an important role during response to abiotic stresses. Here we report that CaMV 35S promoter driven overexpression of a Pyrus pyrifolia 14-3-3 gene, Pp14-3-3, improves drought and NaCl tolerance in T1 generation plants of transgenic tobacco (Nicotiana tabacum L. cv Xanthi). Under drought and NaCl stresses, the Pp14-3-3 was largely expressed in T1 transgenic tobacco lines, and compared with the wild-type (WT), transgenic tobacco plants showed relatively normal growth condition. In addition, the levels of membrane lipid peroxidation in T1 transgenic lines were definitely lower than that in WT according to the significantly decreased content of malondialdehyde. Meanwhile, the T1 transgenic tobacco lines showed significantly slower superoxide anion production rate than the WT under abiotic stress. Moreover, both the glutathione S-transferase (GST) and ascorbate peroxidase (APX) activities in T1 transgenic lines were markedly higher than those in WT. GSTs and APXs are important components of plant antioxidant system, and the results of present study suggested that Pp14-3-3 should play a crucial role in reducing oxidative damage caused by drought and salt stresses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call