Abstract

Plants display a remarkable diversity of thioredoxins (Trxs), reductases controlling the thiol redox status of proteins. The physiological function of many of them remains elusive, particularly for plastidial Trxs f and m, which are presumed based on biochemical data to regulate photosynthetic reactions and carbon metabolism. Recent reports revealed that Trxs f and m participate in vivo in the control of starch metabolism and cyclic photosynthetic electron transfer around photosystem I, respectively. To further delineate their in planta function, we compared the photosynthetic characteristics, the level and/or activity of various Trx targets and the responses to oxidative stress in transplastomic tobacco plants overexpressing either Trx f or Trx m. We found that plants overexpressing Trx m specifically exhibit altered growth, reduced chlorophyll content, impaired photosynthetic linear electron transfer and decreased pools of glutathione and ascorbate. In both transplastomic lines, activities of two enzymes involved in carbon metabolism, NADP-malate dehydrogenase and NADP-glyceraldehyde-3-phosphate dehydrogenase are markedly and similarly altered. In contrast, plants overexpressing Trx m specifically display increased capacity for methionine sulfoxide reductases, enzymes repairing damaged proteins by regenerating methionine from oxidized methionine. Finally, we also observed that transplastomic plants exhibit distinct responses when exposed to oxidative stress conditions generated by methyl viologen or exposure to high light combined with low temperature, the plants overexpressing Trx m being notably more tolerant than Wt and those overexpressing Trx f. Altogether, these data indicate that Trxs f and m fulfill distinct physiological functions. They prompt us to propose that the m type is involved in key processes linking photosynthetic activity, redox homeostasis and antioxidant mechanisms in the chloroplast.

Highlights

  • Thioredoxins (Trxs) are ubiquitous and evolutionarily conserved enzymes of ca. 12 kDa catalyzing the reduction of disulfide bonds through a redox-active dithiol CxxC motif (Arnér and Holmgren, 2000)

  • The transplastomic tobacco plants studied in this work were generated as described previously (Sanz-Barrio et al, 2013) by inserting tobacco Trx f or Trx m sequences

  • The first phenotype analysis revealed that compared to Wt and Trx f+ plants, Trx m+ plants display some delay (2–3 days) in germination in in vitro conditions, a pale-green phenotype and a delay of few days in flowering time when grown in greenhouse conditions (Sanz-Barrio et al, 2013)

Read more

Summary

Introduction

Thioredoxins (Trxs) are ubiquitous and evolutionarily conserved enzymes of ca. 12 kDa catalyzing the reduction of disulfide bonds through a redox-active dithiol CxxC motif (Arnér and Holmgren, 2000). Two plastidial Trx types, named Trx f and Trx m, were primarily identified as light-dependent regulators of enzymes related to photosynthetic processes and carbon metabolism (Jacquot et al, 1978; Wolosiuk et al, 1979). Their denomination was based on in vitro ability to activate by reduction fructose-1,6-bisphosphatase (FBPase) and NADP-dependent malate dehydrogenase (NADP-MDH), respectively. These Trxs are reduced by the ferredoxin/thioredoxin system (Wolosiuk and Buchanan, 1977). This type named Trx h is reduced by cytosolic NADPH thioredoxin reductase (Jacquot et al, 1994) and participates in various processes such as mobilization of seed reserves (Kobrehel et al, 1992) and responses to oxidative stress (Verdoucq et al, 1999)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.