Abstract

The genomic region containing PIK3CA was found to be amplified in esophageal squamous cell carcinoma (ESCC) tissue. PIK3CA at 3q26, which encodes the p110alpha catalytic subunit of phosphatidylinositol (PI) 3-kinase, is a unique intracellular signal transducer characterized by its lipid substrate specificity. In order to characterize PIK3CA in ESCC, we investigated hot-spot mutations in exons 1, 9 and 20, the copy number gain, the expression levels of mRNA and protein. Analysis in exon 9 of the PIK3CA gene revealed mutation in 7.7% (4 of 52) of ESCC samples. No mutation was detected in either exon 1 or exon 20. Copy number amplifications of PIK3CA were found in 12 of the 45 patients (26.7%). PIK3CA mRNAs were examined in 37 ESCC patients as determined by quantitative RT-PCR and the mean mRNA level of PIK3CA in ESCC tissues was 2.61-fold higher compared with that in corresponding non-tumorous esophageal epithelia (P<0.001). Immunohistochemically, positive immunoreaction for PIK3CA was detectable in 33 of 66 (50.0%) ESCC cases, while it was not detectable in the remaining 33 cases. Furthermore, comparing the cases with negative staining with those with positive staining for PIK3CA, the presence of node metastasis was significantly correlated with those with positive staining (P<0.05). This study is the first report providing comprehensive analysis of PIK3CA expression in ESCC. These results indicate that PIK3CA may play a crucial role in the development of ESCC and serve as an indicator for lymph node metastasis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.