Abstract
Sphingolipids are essential for normal cell growth of yeast Saccharomyces cerevisiae. Aureobasidin A (AbA), an antifungal drug, inhibits Aur1, an enzyme catalyzing the synthesis of inositol phosphorylceramide, and induces a strong growth defect in yeast. In this study, we screened for multicopy suppressor genes that confer resistance to AbA, and identified PDR16. In addition, it was found that PDR17, a paralog of PDR16, also functions as a multicopy suppressor. Pdr16 and Pdr17 belong to a family of phosphatidylinositol transfer proteins; however, cells overexpressing the other members of the family hardly exhibited resistance to AbA. Overexpression of a lipid-binding defective mutant of Pdr16 did not confer the resistance to AbA, indicating that the lipid-binding activity is essential for acquiring resistance to AbA. When expression of the AUR1 gene was repressed by a tetracycline-regulatable promoter, the overexpression of PDR16 or PDR17 did not suppress the growth defect caused by the AUR1 repression. Quantification analysis of complex sphingolipids revealed that in AbA-treated cells, but not in cells in which AUR1 was repressed by the tetracycline-regulatable promoter, the reductions of complex sphingolipid levels were suppressed by the overexpressed PDR16. Thus, it was indicated that the overexpression of PDR16 reduces the effectiveness of AbA against intracellular Aur1 activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: FEMS Microbiology Letters
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.