Abstract
NAD+ is a co-enzyme in redox reactions and a substrate required for activity of various enzyme families, including sirtuins and poly(ADP-ribose) polymerases. Dietary supplementation of NAD+ precursors nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR) protects against metabolic disease, neurodegenerative disorders and age-related physiological decline in mammals. Here we sought to identify the roles of nicotinamide riboside kinase 1 (NRK1) plays in regulating hepatic NAD+ biosynthesis and lipid metabolism. Using adenovirus mediated gene transduction to overexpress or knockdown NRK1 in mouse liver, we have demonstrated that NRK1 is critical for maintaining hepatic NAD+ levels and triglyceride content. We have further shown that the hepatic expression of Nmrk1 mRNA is significantly decreased either in mice treated with high-fat diet or in aged mice. However, adenoviral delivery of NRK1 in these diet- and age-induced mice elevates hepatic NAD+ levels, reduces hepatic steatosis, and improves glucose tolerance and insulin sensitivity. Our results provide important insights in targeting NRK1 for treating hepatic steatosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.