Abstract
We studied the cellular function of Nell-1, a craniosynostosis-related gene, in craniofacial development. Nell-1 modulates calvarial osteoblast differentiation and apoptosis pathways. Nell-1 overexpression disrupts these pathways resulting in craniofacial anomalies such as premature suture closure. Craniosynostosis (CS), one of the most common congenital craniofacial deformities, is the premature closure of cranial sutures. Previously, we reported NELL-1 as a novel molecule overexpressed during premature cranial suture closure in patients with CS. Nell-1 overexpression induced calvarial overgrowth and resulted in premature suture closure in a rodent model. On a cellular level, Nell-1 is suggested to promote osteoblast differentiation. Different levels of Nell-1 were introduced into osteoblastic cells by viral infection and recombinant protein. Apoptosis and gene expression assays were performed. Mice overexpressing Nell-1 were examined for apoptosis. In this report, we further showed that overexpression of Nell-1 induced apoptosis along with modulation of apoptosis-related genes. The induction of apoptosis by Nell-1 was observed only in osteoblastic cells and not in NIH3T3 or primary fibroblasts. The CS mouse model overexpressing Nell-1 showed increased levels of apoptosis in the calvaria. We show that Nell-1 expression modulates calvarial osteoblast differentiation and apoptosis pathways. Nell-1 overexpression disrupts these pathways resulting in craniofacial anomalies such as premature suture closure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.