Abstract

Amplification and overexpression of CHD1L is one of the most frequent genetic alterations in hepatocellular carcinoma (HCC). Here we found that one of CHD1L downstream targets, NTKL, was frequently upregulated in HCC, which was significantly correlated with vascular invasion (P = 0.012) and poor prognosis (P = 0.050) of HCC. ChIP assay demonstrated the binding of CHD1L to the promoter region of NTKL. QRT-PCR study showed that the expression of NTKL positively correlated with CHD1L expression in both clinical samples and cell lines. Functional study found that NTKL had strong oncogenic roles, including increased cell growth, colony formation in soft agar, and tumor formation in nude mice. Further study found that NTKL could promote G1/S transition by decreasing P53 and increasing CyclinD1 expressions. NTKL overexpression could accelerate the mitotic exit and chromosome segregation, which led to the cytokinesis failure and subsequently induced apoptosis. NTKL also regulated cell motility by facilitating philopodia and lamellipodia formation through regulating F-actin reorganization and the phosphorylation of small GTPase Rac1/cdc42. Using co-IP and mass spectrometry approach, we identified the large GTPase dynamin2 as an interacting protein of NTKL, which might be responsible for the phenotype alterations caused by NTKL overexpression, such as cytokinesis failure, increased cell motility and abnormal of cell division.

Highlights

  • Hepatocellular carcinoma (HCC) ranks the fifth among the malignant cancers worldwide [1]

  • The oncogenic function of CHD1L has been correlated with its upregulating downstream target genes such as ARHGEF9 [8], TCTP [21], and SPOCK1 [22]

  • Our data showed that overexpression of CHD1L could upregulate the expression of NTKL in hepatocellular carcinoma (HCC) cell lines

Read more

Summary

Introduction

Hepatocellular carcinoma (HCC) ranks the fifth among the malignant cancers worldwide [1]. As reported by many studies, genomic aberrations have been frequently observed in HCC including gain of 1q, 6q, 8q, 17q and 20q, and loss of 4q, 8p, 13q, 16q and 17p have been frequently detected in HCC [2,3,4,5]. Among these genetic alterations, amplification of 1q21 is one of the most frequent changes in HCC and one candidate oncogene CHD1L has been identified [6]. CHD1L has been shown to relocalize to DNA damage foci after DNA damage induction and regulate the DNA damage response [11]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.