Abstract
Signal transduction can involve the activation of protein kinase C (PKC) and the subsequent phosphorylation of protein substrates, including myristoylated alanine-rich C kinase substrate (MARCKS). Previously we showed that stimulation of phosphatidylcholine (PtdCho) synthesis by PMA in SK-N-MC human neuroblastoma cells required overexpression of MARCKS, whereas PKCalpha alone was insufficient. We have now investigated the role of MARCKS in PMA-stimulated PtdCho hydrolysis by phospholipase D (PLD). Overexpression of MARCKS enhanced PLD activity 1.3-2.5-fold compared with vector controls in unstimulated cells, and 3-4-fold in cells stimulated with 100 nM PMA. PMA-stimulated PLD activity was blocked by the PKC inhibitor bisindolylmaleimide. Activation of PLD by PMA was linear with time to 60 min, whereas stimulation of PtdCho synthesis by PMA in clones overexpressing MARCKS was observed after a 15 min time lag, suggesting that the hydrolysis of PtdCho by PLD preceded synthesis. The formation of phosphatidylbutanol by PLD was greatest when PtdCho was the predominantly labelled phospholipid, indicating that PtdCho was the preferred, but not the only, phospholipid substrate for PLD. Cells overexpressing MARCKS had 2-fold higher levels of PKCalpha than in vector control cells analysed by Western blot analysis; levels of PKCbeta and PLD were similar in all clones. The loss of both MARCKS and PKCalpha expression at higher subcultures of the clones was paralleled by the loss of stimulation of PLD activity and PtdCho synthesis by PMA. Our results show that MARCKS is an essential link in the PKC-mediated activation of PtdCho-specific PLD in these cells and that the stimulation of PtdCho synthesis by PMA is a secondary response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.