Abstract

Objective. To evaluate the effects of miR-210 on cardiac stem cells (CSCs) against hypoxia-induced injury. Methods. CSCs were isolated from rat ventricular wall and cultured until passage 4. After exposure to hypoxia for 6 h, the expression of miR-210 was determined. Thereafter, transfection of miR-210 mimic and inhibitor was carried out. 1 week later, in vitro experiments were performed to measure the expression of caspase-8-associated protein 2 (Casp8ap2), Caspase 8, protein tyrosine phosphatase, non-receptor type 2 (PTPN2) and CXC chemokine receptor 4 (CXCR4), as well as migration and apoptosis of CSCs under hypoxic condition. Results. Hypoxia induced a significant up-regulation of miR-210 expression in CSCs. Notably, the expression of Casp8ap2, Caspase8, PTPN2 was dramatically inhibited by overexpression of miR-210 in CSCsmiR-210 Group (P < .05), but no changes in CXCR4 (P > .05), compared with the control. Additionally, a decreased apoptosis of CSCs was detected in CSCsmiR-210 Group (26.22 ± 1.15%, P < .001), compared with Control Group (34.97 ± 0.63%). Moreover, the migration of CSCs was significantly promoted in CSCsmiR-210 Group (45.73 ± 2.4, P < .001), compared with Control Group (19.6 ± 1.11). Meanwhile, down-regulation of miR-210 reversed these results (P < .05). Conclusions. miR-210 was a hypoxia responsive element in CSCs, and its up-regulation inhibited apoptosis of CSCs and promoted their migration under hypoxic condition, through regulating its target genes Casp8ap2/Caspase 8 and PTPN2, which may provide a new strategy for cell therapy of ischemic heart disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call